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EQUILIBRIUM OF AN INHOMOGENEOUS FLUID IN CASES 
POTENTIAL ENERGY IS NOT MINIMAL* 

V.A. VLADIMIROV 

The possibility of extending the methods of proof of instability /l-3/ to 

the hydrodynamics of an ideal incompressible density-inhomogeneous 

(stratified) fluid is explored. As distinct from the general statement 

/3/, the rigid walls of the vessel containing the fluid are assumed to be 

fixed, so that the purely hydrodynamic part of the problem is isolated. 

Examples of a two-layer (with and without surface tension) and of a con- 

tinuously stratified fluid are studied. The main result is to find 

Lyapunov functionals W which in all cases are increasing, by virtue of the 

linearized equations of motion of the fluid. The structure of these func- 

tionals is such that their growth implies instability in the sense of an 

increase of the integrals of the disturbance-squared of the hydrodynamic 

fields (instability in the linear approximation in the mean square). The 

form of the functionals W is determined by the Hamiltonian statement of 

the theorem on the instability of finite-dimensional mechanical systems 

/2/ and by the usual ways of introducing the canonical variables into 
the hydrodynamic problem /4, 5/. In view of the well-known equivalence 
of stratification and rotation effects /6, 7/, all the present results 
hold for two classes of rotating flows of homogeneous fluid. Lyapunov's 

and Chetayev's theorems (the converse of Lagrange's theorems) are well- 

known in analytical mechanics; they consist in proving the instability 
of the equilibrium position of a mechanical system when its potential 
energy has a maximum or a saddle point /l, 2/. The extension of these 

theorems to systems that contain rigid bodies and fluid is described in 

/3/ (Theorem III, p.178). 

1. Basic equations. We consider the three-dimensional motions ofanideal incompressible 
fluid which entirely fills the domain z with boundary i%. 1n Cartesian coordinates %rXz,X3 
the equations of motion and the boundary conditions are 

(1.1) 

*Prikl.Matem.Mekhan.,52,3,415-422,1988 
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where u = h, 4, u,), PI and p are the velocity, density, and pressure fields, n = (R, s,, +J 
is the normal to dr, and CD = Q(x) is the potential of the external field of mass forces, 
such that IV @J#O in z. Summation is performed with respect to repeated subscripts. The 
energy integral for (l.l), (1.2) is the sum of the kinetic and potential energies: 

The state of hydrostatic equilibrium is the solution of (l.l), (1.2) given by 

" 5% 0, P = PO 6% P = PO P) 

Linearization of (1.1) at (1.4) gives the equations 

(1.4) 

p$l* = -VP’ - p’GaJ 

pt' + (uV) p, = 0, div u = 0 
(1.5) 

in which u,p', and p’ are the fields of velocity, density, and pressure disturbances. 

2. Two-layer fluid. We study the stability of the hydrostatic equilibrium (1.4) of 

two fluids with constant densities PO = P+ and p. = FL, which fill the parts t+ and r_ of 
the domain r (r = 7, U z_). The boundary da dividing the fluids is the same as a level 

0 = const. Let v be the unit normal to da, directed to the fluid p_. We define on aa the 
function g> 0, such that gv = V@,. The choice of g> 0 means that @ is increasing from 

T+ to r-9 while everywhere on au the force is directed from Z_ to 7,. 

The linear problem of stability is studied in the class of motions with potential fields 

of the velocity u = VT of each fluid when there are no disturbances of the density p' zs 0. 
Description of the fluid motions amounts to considering the kinematic and dynamic conditions 

on the undisturbed boundary 

Nf = ukvkr [pqtl = -_[pl@ (2.1) 

where N is the normal displacement of the fluid contact boundary; the brackets denote a jump 
of a quantity on dp: [cp]s cp, - cp_. 

Eqs.(2.1) are often obtained by linearization in Euler coordinates with "removal" of the 

boundary conditions from the known moving boundary &J* to the undisturbed boundary &J 

/7, S/. Difficulties then arise both in treating the fields of Euler disturbances in the 

domains between acr* and i3a, and in the interpretation of the removal procedure. A method 
of linearization which avoids these difficulties and leads to the same Eqs.(Z.l) is given in 

/9/ (Sect.13). 

The analogue of the energy integral (1.3) for problem (2.1) is 

E = T + II = cord 

2Tsp+ i llkUkdZ+&S +$‘kdT= 
I+ L 

S [Pal ukvk dS~ 

ao 

23 = [PI in 0’ dS 

(2.2) 

With [p]g>O, the lighter fluid is in the domain r_, and in view of integral (2.2), we 

can speak of stability in the mean square. The simplest definition of stability can be given 
e.g., in the spirit of /lo/ (p-24), by measuring the deviation of the disturbed from the 
undisturbed solution directly by means of the two quantities T and lI. Stability of the state 

of rest (1.4) then implies that, given any number e>O, there is a S>O such that the 

satisfaction at the initial instant of T(0)<6, II(O)<6 for all t>o, implies T (t) < s, 
II (t) < a. This fact can be reqarded as the hydrodynamic analoque of Laqranqe's theorem on the . , 
stability of the equilibrium state when the potential energy in 

be shown /3, 11/ that, for functional IT,, of (1.31, its first 
of the equilibrium conditions, while the second is equal to the 

To demonstratetheinstabilitywhen IpIg < 0, we introduce 

W- s IPcplNdS 
dD 

_ _ 
it is a minimum. For, it can 

variation vanishes by virtue 

n of (2.2). 
the functional 

(2.3) 
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whose time derivative is, by Eqs.(L.l), 

tlWclr ~~~ 2 (T -- II) _E 2 (E - 211) (2.4) 

with T,II,I:‘ of (2.2). Since, for IpIg< 0, we always have n< 0, then dW!& > "b' ,. OrI 
taking as the initial data the disturbance with E>O, we obtain for (2.3) a linear estimate 
of the increase M7> IV0 + 2Et. From this there follows the inequality 

which implies instability in the sense of an increase in the mean square values N and (or) 

IPCOI. By the conditions 

s 
&I 

Ipo'J/g cls = co11st (Z.6) 

no increases in [pcpl can occur due to the function, which depends on time only, which appears 

in the definition of the potential. Eq.(2.6) can be checked by direct calculation of the time 

derivative, using (2.1) and the fluid incompressibility condition in the form 

[ NCLS=O 
An 

The constant in (2.6) can be made zero by a suitable choice of the constants in the 

definitions of w+ and 'p_. 

Inequality (2.5) can be regarded as an analogue of Lyapunov's theorem on instability when 

the potential energy has a maximum in the equilibrium position (/l/, p.90). 

3. The presence of surface tension. To simplify that treatment, we assume here 

that the gravity field is homogeneous, CD = gz,, g = const> 0, and that the surface tension a 
on the boundary between the fluids is constant. Only two statements will be considered. In 

the first, the domain 7 is the layer a<~,< b, so that the surfaces 87 and 80 do not 

intersect. The energy integrals will have a meaning for motions which are periodic or rapidly 

damped with respect to 51, 2.2. In the second statement, the domain v is finite, there is no 

surface tension on at, and the surfaces aa and Ot interest at right angles. The angle of 

contact is also ni2. Under these conditions the surface i3u is given by the equation kg z 0. 

Relations (2.1) become /II/ 

The kinetic energy (2.2) is unchanged, while the potential energy is 

(3.1) 

For lplg > 0 we have stability in the mean square. The difference from the case a.-0 
is that the deviation of the disturbed from the undisturbed solution is now measured by the 

integrals T and 11, the second of which contains, not only N, but also its first derivatives. 

The functional W, suitable for demonstrating instability with [p]g<O, remains as before 

((2.3), (2.4) 1: 

W=s Ip@Ndx,dx,, dW/dt=2(T-II) 
a0 

(3.2) 

except that n is now taken from (3.1). The essential change is that, by virtue of the 

inequalities Iplg < 0, a > 0, the integral (3.1) may either be positive definite, or have no 

definite sign. In the former case, we have stability of the equilibrium of the heavy fluid 

over the light fluid (stabilization by surface tension /ll/). We can show that stability is 

present in the latter case by writing (3.2) as dWldt = 2 (2T - E) and taking the initial data 

with E < 0. For this, it is sufficient to take e,g., T (0) = 0, II (0) < 0. Then, 

dWldt > 2 I E ,, W>W,-t2lEIt (3.3) 

after which the treatment is the same as in Sect.2. 
As before, the IT of (3.1) is the same as the second variation of the potential energy 

(/ll, p.127). Thus, when disturbances are present with n>o and II-co, we can say that 

the potential energy has neither a maximum nor a minimum in the equilibrium position. Withthis 
interpretation, the assertion about instability that follows from (3.3) can be regarded as an 
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analogue of Chetayev's theorem (/2/, p.40). 

4. COntinUOUS StratifiCStiOn. The entire domain 'G is now filled with inhomogeneous 

fluid with continuously variable density p(X,t). We consider the states of rest (1.4) with 

smooth functions p,,(o), p,,(a). For small disturbances (1.5), (1.2) the energy integral is 

E=T + n=const, 2T = j poukuk dz (4.1) 
7 

For @'<O, since integrals (4.1) are positive definite, the states (1.4) are stable 
in the mean square. This fact can also be regarded as a hydrodynamic analogue of Lagrange's 

theorem. Such a treatment is given in the non-linear statement in /12/. 

Now, in terms of the exact Eqs.(l.l), we shall isolate the class of motions in which 
cases of instability can be studied. After eliminating the pressure from (l.l), we obtain 
the equation for the vector field 1 (x, t) to be "frozen" 

D?. = (LB) u (4.2) 
&so + Vp X Va, u3 rot(pu) 

where a(X, t), by definition, satisfies the equation 

Da = CD - V,uiui + F (p) (4.3) 

in which F(p) is an arbitrary function of p. The initial data a(x,O) are also arbitrary. 
We can regard (4.2) as a generalization of the "frozen" property ofthevorticity field, which 
follows from (4.2) with p = const, and is valid fora homogeneous fluid. In this treatment, 
the generalizations of the potential flows are the flows with h E 0, for which we obtain 
after integration, by the definition of h the relation 

pu = VT + avp (4.4) 

in which the function cp (X, t) is taken from the conditions dive = 0 in z and usn =0 on 

&. 
It should be noted that (4.4) is the Clebsch form /8/ for the vector field pu. The deri- 

vation of (4.4) from (1.1) shows how the Clebsch form arises naturally from integration of the 

equations of motion of an inhomogeneous fluid. Clearly, (4.4) holds, for example, if the 
motion arises from the state of rest, or more widely, from the state with a(r,O)~0. For, in 
view of the arbitrariness in the choice of a(x,O), we can take a(x,O)=O, and the equation 

1,(x, t) ro, see (4.2), will be satisfied. 

The second restriction on the class of motions consists of the fact that the Lagrangian 

disturbance of the denisty field vanishes. In other words, the initial data p(x,O) of the 

disturbed motion are obtained by a variation of the coordinate of each fluid particle while 

leaving its density unchanged. It is easy to write this with the aid of the fieldof Lagrangian 
displacements 5 (x, t) /g/. 

In the light of these two restrictions, the final system of equations of motion, linearized 

at (1.41, can be written as 

a, = -a (p,)p, p = - (EV)p,, Et = u, div 5 = 0 (4.5) 

with the boundary conditions on ti 
%.n = 0 (4.6) 

and the initial conditions 

a (X9 0) = 0, %(X, 0) = So(X) (4.7) 

where the first equation in (4.5) is obtained after linearizing (4.3) and taking F(p)= -m(p). 

From a (X, 0) = 0, pou (x, 0) = Vq, div u = 0 in r and u-n =0 on &, it follows that 

u (x, 0) = 0 c/13/, p.112). For the field a(x,t) it follows from (4.5)-(4.7) that 

dIJdt = 0, I=O; I+dr (4.8) 
r 

To demonstrate the instability of states (1.4) when @'>a, we now take the functional 

W in the form 

W=ipadz (4.9) 
T 

Using (4.5)-(4.7) to calculate the time derivative, we obtain 

dWldt = 2 (T - rI) SE 2 (2T - E) (4.10) 

with the T,lI, and E of (4.1). If we have 0'> 0 everywhere in Z, then I'I (0. Since in 
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this class of motions T (0) = 0, then E<O and we obtain 
the increase W> W, f 2 1 E 1 t. It is now clear that 

p'+aZ)dr>.'W"+41E/t 

from (4.10) d linear estimate of 

(cr.1 2) 

In accordance with (4.11), the mean square values of p and a are increasing. The 

growth of the density disturbances in fact signifies physically instability. At the same 

time, the growth of a may occur as a result of the function of time which appears additively 

in it, and may not signify an increase in velocity. This possibility is excluded by the 

equation I = 0, see (4.8). 

Now assume that the function PO (Q') is not monotonic. There are then in t domains 

of both increasing and decreasing density in the direction of the force vector. For smooth 

PO (@) there always exist values of 0, at which dp,/dD = 0, so that (4.1) and (4.5) become 

meaningless. However, for disturbances with P = - (2.V Pot the potential energy (4.1) and 

the first of Eqs.(4.5) may be rewritten in forms which have no singularities: 

In the present case, there are disturbances both for n>o and for II < 0 in the 

neighbourhood of the equilibrium position. If we choose the initial data with T (0) = 0, 

n (0) < 0, we again arrive at (4.9)-(4.11). 

Recalling that n is the second variation of the potential energy n, of (1.3), we can 

interpret inequality (4.11) as the linear hydrodynamic analogue of the Lyapunov and Chetayev 

theorems on instability. 

5. On the choice of the functional TV. The heuristic basis for choosing the 

functionals W of (2.3), (4.9) is the analogy with finite-dimensional Hamiltonian systems. If 

Qi, pi (i = 1, 2, . . n) are the generalized coordinates and momenta of this system, then the 

Lyapunov function in the proof of instability has the form W = piqi C/2/, p.40). Expressions 

(2.3) and (4.9) are similar in structure, apart from replacement of summation over the degrees 

of freedom by integration. For, in the Hamiltonian statements of the hydrodynamics of a 

two-layer fluid, the role of canonical variables is played by ]p'p] and F*v /4/, or for an 

inhomogeneous fluid, by a and p /5/. 

The key role of our restrictions on the classes of motions must be specially mentioned. 

Notice that, with the aid of the field of Lagrangian displacements s,the functional W (2.3), 
(3.2) can be written as the sum of volume integrals 

U'=p+ 1 uEdr + p_ \ 11: dT 

T+ r”_ 

and can be understood more widely, by assuming that the velocity field is rotational 

rot u # O), and satisfies in r+ the equations 

&u, = -VP, div u = 0, u = g, 

on ar the no-flow conditions 

u.n = 5.n = 0 

and pn I% the kinematic and dynamic conditions 

A~~,=Ft.Y=u.v, [p]=[p]E.V0 

(.X1) 

(0 ZEz 

(5.2) 

(5.3) 

(S.4) 

which can be obtained by the method described in /9/ (see the remarks on (2.1)). 
For the functional (5.1), we obtain by (5.2)-(5.4) without assuming that the disturbances 

are potential, the equation dWldt = 2(T - n), with T and II from (2.2), the kinetic energy 

T being taken only in the form of a sum of volume integrals. With n<o, we have for (5.1) : 
w>w, + 2Et, which leads, instead of (2.5), to the inequality 

P+ ~(I~12+I~12)d+p_ ~(lu12+I~~2)d~>2Wo+4~~ 
r+ ;. 

(5.5) 

from which the mistaken conclusion can be drawn about instability in the mean square norm 

with respect to the velocities and displacements. The point is that, here, due to the absence 

in an ideal fluid of velocity displacement damping, the displacements of the fluid particles 

in general increase linearly even in the case of stable density stratification. Thus a 

linear growth of (5.1) does not always correspond to the physical fact of instability. 
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For explanation, we take the rotational flows in the domains z+ and z_ when stable 

density layering lplg>O is present. It follows from (5.2) that the vortex field o,rO is 

stationary, and no further restrictions are imposed on o(x). On taking certain vortex fields 

@J* (r) in Tf and imposing the condition N= g.v=O on da, we can construct in each of domains 

'* stationary solutions Uf (r) in which always p*:O. Conditions (5.3) and (5.4) are then 

satisfied. For these solutions g= g,,(x)+ u(x)t, and we have linear growth of the functional 

(5.1) and quadratic growth of (5.5). At the same time, the present disturbance is stationary, 
and of course, there is not instability. 

In short, the restriction of the class of potential disturbances, made in Sects.2 and 3, 

is important in principle. It is for potential disturbances that the functional (5.1) reduces 

to forms (2.3), (3.2), which enable us to consider only normal displacements of the dividing 

surface, and not arbitrary displacements of the fluid 

The same can be said of functional (4.9) and the 

and (4.5), we can reduce (4.9) to the form 

W=jp,u.Edr 
r 

particles. 

class of motions (4.5). By using (4.4) 

For disturbances which cannot be written in the form (4.4), a linear growth of the func- 

tional does not signify instability. Here, even in the case of stable stratification Q'<O, 
the components of 5 parallel to the surfaces po=const can increase linearly. 

Notes. lo. When writing the integrals of the sums of squares of disturbances (2.5), (4.11) 

(5.5), it is understood that dimensionless variables are introduced for each statement. As 

the scales of length and time, we can in all cases take the vessel dimensions L and the quan- 

tity (L/g)"'. 

2O. By using the equivalence of the effects of stratification and rotation as described 

in /6, 7/ (Chapter E), we can obtain directly by a change of notation assertions about the 
instability of two classes of rotating flows of homogeneous fluid. These include translation- 

ally invariant and rotationally symmetric flows. An example of the latter is Couette flow 
between rotating cylinders when the square of the velocity circulation decreases as the radius 

increases. To obtain the relevant statements, it is sufficient to take the equivalents of the 

density and gravity field of /6, 7/ and use the relations of the present paper. 

3O. From the mathematical point of view, our assertions about instability are in the 
nature of a priori estimates, since no suitable theorems of existence are proved for the 

solutions. 

40. Since our results are of a linear kind, they can be related to the conclusions of 

spectral theory. 

5O. The merits of our approach are simplicity, generality, the similarity of its ideas 

to the mechanics of finite-dimensional 

toconsidernon-linear statements. 

The author thanks V.V. Rumyantsev 

systems, and the fact that it is possible in principle 

for useful discussions and comments. 
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THREE-DIMENSIONAL DISTURBANCES IN A COMPRESSIBLE BOUNDARY LAYER* 

I.V. SAVENKOV 

The propagation of three-dimensional disturbances from impulsive and 

harmonic sources in a compressible boundary layer on a plane plate is 

discussed. It is assumed that the Reynolds number tends to infinity. 

The field of the perturbed motion is obtained in the context of the 

linearized theory of the boundary layer with selfinduced paressure. The 

solution of the linearized equations is decomposed into Fourier integrals. 

When finding the inverse transformations, numerical and asymptotic methods 

are combined. A comparison is made with experimental data and calculations 

of the linearized Navier-Stokes equations. The theory of a boundary 

layer (BL) with selfinduced pressure /l, 2 / is useful for studying the 

BL instability in an incompressible fluid at high Reynolds numbers R, 

see e.g,, /3-g/. At the same time, the asymptotic theory /l, 2/ predicts 

stability (in the limit as R-m) of the supersonic BL with respect to 

plane disturbances propagating strictly along the flow, which is incon- 

sistent with the well-known results for finite R, see e.g., /lo, II/. 

In the framework of asymptotic theory, however, the supersonic BL is 

unstable with respect to oblique waves (travelling at non-zero angles to 

the incoming flow) /12, 13/. It can therefore be expected that the packet 

of oblique waves of instability in the limit as R-cc is qualitatively 

correctly described by the theory /l, 2/. (All the more, because at 

finite R, as the Mach number M, of the incoming flow increases, the 

oblique waves become the most unstable, and their role is significantly 

increased in the supersonic BL /lo, ll/). A packet of oblique waves is 

generated by any source which introduces serious three-dimensional 

perturbations into the boundary layer. In the present paper,-such a 

source is taken to be injection and extraction via holes in the plate. 

The solution of specific problems assumes a detailed analysis of the 

influence of the Mach number M, on the BL stability (in the limit as 

R-m). 

1. Time instability. We start by analysing the dispersion relation (DR) 

F(Q, k, m;M,) = 0((n)- Q(k,m;M,) = 0 

Q = (ik)‘/,s (k2 + m2)/1/S7 s = m* + (1 - M-Y k2 

(1.1) 

obtained after linearizing the equations of the freely interacting compressible EL /14/ with 

respect to disturbances of the type f(y)exp(ot+ ikx + imz) /3, 12, 13/ (5, y, z are dimen- 

sionless coordinates, measured respectively downstream, along the normal to the plate, and 
in the lateral direction, t is dimensionless time, M, is the Mach number of the incident 

uniform flow, and Ai (5) is the Airy function. In the case S<O we understand by the root 
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